class NP - перевод на Английский
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

class NP - перевод на Английский

COMPUTATIONAL COMPLEXITY CLASS OF DECISION PROBLEMS SOLVABLE BY A NON-DETERMINISTIC TURING MACHINE IN POLYNOMIAL TIME
NP (complexity class); Nondeterministic polynomial time; NP-problem; NP-Problem; NP class; NP Class; NP-Class; NP-class; Class NP; Complexity class NP; Nondeterministic Polynomial; Nondeterministic polynomial; Np (complexity); NP (class)
  • s2cid=14352974 }} Corollary 1.1.</ref>

class NP         
класс NP, класс трудных задач, решаемых в полиномиальное время недетерминированным алгоритмом
NP problem         
UNSOLVED PROBLEM IN COMPUTER SCIENCE ABOUT TIME COMPLEXITY
P=NP; P and NP; P = NP; P==NP; P≠NP; P!=NP; P/=NP; P versus NP; P vs. NP; P vs NP; P=NP?; NP problem; P Versus NP Problem; P=np; P vs np; Complexity classes P and NP; P=NP problem; P ≠ NP; P is not NP; NP=P; NP = P; P Versus NP; Succinct problem; Succinct problems; P=?NP; P vs. NP problem; P = NP problem; Algebrization; P = NP?; P vs NP problem; Vinay Deolalikar; P≟NP; P ≟ NP; P ? NP; NP conjecture; P conjecture; NP versus P problem; NP=P problem; Smale's third problem; User:Robert McClenon/Vinay Deolilakar; Vinay Deolilakar; P/NP Problem; P v NP; P = np; P≟NP problem; Np vs p; P versus NP conjecture; NP versus P conjecture
недетерминистическая задача полиномиального времени
NP-completeness         
COMPLEXITY CLASS
NP-complete problem; NP-complete problems; NP complete; NP completeness; NP-C; Np complete; Np-complete; NP-complete language; Np-complete problem; NP-Completeness; Np completeness; Non-deterministic polynomial-time complete; NP-Complete; Nondeterministic Polynomial Complete; Non polynomial complete; Np-Complete; NP-complete; NP-incomplete
NP-полнота

Определение

Непер
I Не́пер

Нейпир (Napier) Джон (1550, Мерчистон-Касл, близ Эдинбурга, - 4.4.1617, там же), шотландский математик, изобретатель Логарифмов. Учился в Эдинбургском университете. Основными идеями учения о логарифмах Н. овладел не позднее 1594, однако его "Описание удивительной таблицы логарифмов", в котором изложено это учение, было издано в 1614. В этом труде содержались определение логарифмов, объяснение их свойств, таблицы логарифмов синусов, косинусов, тангенсов и приложения логарифмов в сферической тригонометрии. В "Построении удивительной таблицы логарифмов" (опубликовано 1619) Н. изложил принципы вычисления таблиц. Кинематическое определение логарифма, данное Н., по существу равносильно определению логарифмической функции через дифференциальное уравнение. Н. принадлежит также ряд удобных для логарифмирования формул решения сферических треугольников.

Соч.: Mirifici logarithmorum Canonis descriptio; ejusque usus, in utraque, trigonometria, utetiam in omni logistica mathematica... explicatio, Edin., 1614.

Лит.: История математики, т. 2, М., 1970.

II Не́пер

единица логарифмической относительной величины (натурального логарифма (См. Натуральный логарифм) отношения двух одноимённых физических величин). Названа по имени Дж. Непера, обозначается - нп или Np. 1 нп = In (F2/F1) при F2/F1 = e, где F2 и F1 - физические "силовые" величины (напряжения, силы тока, давления и т.п.) и е - основание натуральных логарифмов. Н. применяется в основном при измерениях ослабления (затухания) электрических сигналов в линиях связи. Соотношение с др. единицами логарифмической относительной величины - Белом и Децибелом: 1 нп = 2lgе б ≈ 0,8686 б = 8,686 дб.

Википедия

NP (complexity)

In computational complexity theory, NP (nondeterministic polynomial time) is a complexity class used to classify decision problems. NP is the set of decision problems for which the problem instances, where the answer is "yes", have proofs verifiable in polynomial time by a deterministic Turing machine, or alternatively the set of problems that can be solved in polynomial time by a nondeterministic Turing machine.

An equivalent definition of NP is the set of decision problems solvable in polynomial time by a nondeterministic Turing machine. This definition is the basis for the abbreviation NP; "nondeterministic, polynomial time". These two definitions are equivalent because the algorithm based on the Turing machine consists of two phases, the first of which consists of a guess about the solution, which is generated in a nondeterministic way, while the second phase consists of a deterministic algorithm that verifies whether the guess is a solution to the problem.

It is easy to see that the complexity class P (all problems solvable, deterministically, in polynomial time) is contained in NP (problems where solutions can be verified in polynomial time), because if a problem is solvable in polynomial time, then a solution is also verifiable in polynomial time by simply solving the problem. But NP contains many more problems, the hardest of which are called NP-complete problems. An algorithm solving such a problem in polynomial time is also able to solve any other NP problem in polynomial time. The most important P versus NP (“P = NP?”) problem, asks whether polynomial-time algorithms exist for solving NP-complete, and by corollary, all NP problems. It is widely believed that this is not the case.

The complexity class NP is related to the complexity class co-NP, for which the answer "no" can be verified in polynomial time. Whether or not NP = co-NP is another outstanding question in complexity theory.

Как переводится class NP на Русский язык